基于 LC-MS/MS 法测定蔬菜中多种农药残留的方法研究

李绍群,严国荣,胡 康,蔡 莉,陆 煜 兴化市产品质量综合检验检测中心,江苏泰州 225700

【摘要】目的:采取超高效液相色谱串联质谱法(LC-MS/MS)对蔬菜中6种农药残留展开检测。方法:粉碎的蔬菜样品采取乙腈超声提取并通过QuEChERS法净化后,上机检测。结果:相应浓度范围内,6种农药线性良好,相关系数0.9991~1.0000,3个水平的加标回收显示方法具备0.7%~9.6%的精密度和74.1%~100.3%的平均回收率。结论:经试验证明,该方法操作简便,回收率与灵敏度高,具备良好的分离效果,检出下限并未超出国家安全标准限量,可用于检测蔬菜样品中多种农药残留。

【关键词】LC-MS/MS; 蔬菜; 农药残留; QuEChERS; 方法研究

【中图分类号】S481.8 【文献标识码】A 【DOI】10.12325/j.issn.1672-5336.2022.04.010

超高效液相色谱串联质谱(LC-MS/MS)技术弥补了色谱和质谱单一技术的缺陷,通过色谱高效分离、质谱高灵敏度及抗干扰离子监测等性能的有机结合,能够准确测定基质复杂的蔬菜中目标化合物。现有农药残留检测标准方法中,多采用 SPE 法进行前处理,该方法通过活化、上样、洗脱、浓缩过程实现,准确性较好,但是耗力、费时,不够快捷,而 QuEChERS 在食品安全监测方法前处理中,具有溶剂使用量少、环境友好、精密度和准确度高、操作简便、成本低的优点,被广泛应用。本文以常规蔬菜中6种检出率相对较高的农药为研究对象,引入 QuEChERS 前处理方法,采取 LC-MS/MS 测定,通过方法线性、精密度、回收率等指标考察方法性能,以建立检测效率高、费用低且灵敏度好的检测方法。

1 材料与方法

1.1 材料与试剂

乙腈、甲酸、乙酸铵(均为色谱纯); 氯化钠(分析纯); 实验用水为自制超纯水,吸附剂聚四氟乙烯滤膜 (Poly Tetraluoro Ethylene, PTFE, $0.22\,\mu\,\mathrm{m}$)、乙二胺 – N – 丙基硅烷 (Primary Secondary Amine, PSA)。甲胺磷、氯唑磷、毒死蜱、氧乐果、啶虫脒、三唑磷标准溶液(坛墨, $100\,\mu\,\mathrm{g/mL}$,溶剂乙腈); 番茄、芹菜、韭菜、萝卜等蔬菜样品(市购)。

1.2 仪器与设备

超高效液相色谱 - 串联三重四极杆质谱仪 (Waters TQS/I-Class); 涡旋仪 (IKA DL-866); 台式高速冷冻离心机 (SIGMA 3K15); 超纯水系统 (Milli-Q); 电子分析天平(FA3204B,万分之一); 超声波清洗器 (KQ-800KDE);

氮吹仪(TTL-DCI)。

1.3 标准溶液配制

系列农药标准品配制:各标准品溶液分别精确量取适量,乙腈稀释后,完成混合标准中间液的配制(10.0 μ g/mL)。基质标准溶液:混合标准中间液精确量取适量,采取不含目标物检出的蔬菜样品为空白基质,完成基质匹配系列标准溶液的配制(浓度为 0.1、0.2、0.5、1、2、5 μ g/mL),混匀过滤待测。

1.4 样品前处理

蔬菜样品经粉碎后,精确称取 10.00g 至 50mL 离心管中,加入 10.0mL 乙腈提取并匀浆,持续 30min 超声提取,添加 2.0g 氯化钠后震荡 2min,离心 5min (4000r/min)。取 1.5mL 上清液,添加 QuEChERS 净化包后涡旋1min、离心 3min (10000r/min),取 1.0mL 上清液,氮吹近干,10% 乙腈水溶液 1.0mL 复溶,涡旋混匀后待测。

1.5 仪器条件

色谱条件: 色谱柱ACQUITY UPLC® BEH C18 2.1×50 mm, 1.7μ m,柱温 $40 \,^{\circ}$ C,乙腈、含 $0.1 \,^{\circ}$ 甲酸的 5mmol 乙酸铵溶液分别为流动相 A、B;进样量 $2 \,^{\circ}$ LL,流速 $0.3 \,^{\circ}$ mL/min;梯度洗脱程序为 $10 \,^{\circ}$ $\sim 30 \,^{\circ}$ MA, $0 \,^{\circ}$ $\sim 2.0 \,^{\circ}$ min; $30 \,^{\circ}$ $\sim 40 \,^{\circ}$ MA, $2.0 \,^{\circ}$ $\sim 3.0 \,^{\circ}$ min; $40 \,^{\circ}$ $\sim 90 \,^{\circ}$ MA, $3.0 \,^{\circ}$ $\sim 6.0 \,^{\circ}$ min; $90 \,^{\circ}$ MA,维持 $1 \,^{\circ}$ min; $90 \,^{\circ}$ MA, $10 \,^{\circ}$ MA,

质谱条件:多反应监测模式 (MRM);离子源 (ESI+);锥孔电压 25V,碰撞能量 15V,干燥气流量:700L/Hr;干燥气温度:600℃;雾化气压力:6.2Bar。数据采集和处理自动优化软件 Masslynx 4.0。

2 结果及分析

2.1 方法检出限及定量限

以线性范围最低质量浓度为依据进样, 方法检出限 计算采取 S/N=3, 定量限计算采取 S/N=10。根据表 1 得知, 啶虫脒检出限和定量限同时最低,分别为 0.01 μg/kg、 0.02 μg/kg; 氧乐果检出限相对偏高, 为 0.06 μg/kg, 其定量限也最高,为0.18 μg/kg。其他农药检出限不超 过 0.02 μ g/kg, 定量限不超过 0.06 μ g/kg。

表 1	6 种农药基质标准溶液的方法检出限及定	₹量限
700		_ _

序号	名称	溶液浓度(mg/L)	信噪比(S/N)	检出限(μg/kg)	定量限(μg/kg)	标准定量限 (μ g/kg)
1	甲胺磷	0.1	1670	0.02	0.06	7
2	氯唑磷	0.25	2841	0.02	0.05	5
3	毒死蜱	0.1	2157	0.01	0.05	10
4	氧乐果	0.1	1539	0.06	0.18	33
5	啶虫脒	0.1	2694	0.01	0.02	10
6	三唑磷	0.1	2036	0.01	0.04	37

2.2 回收率与精密度

分别取 10.0g 未检出目标物的番茄、芹菜、韭菜 及萝卜4种蔬菜样品作为空白,按照高、中、低3个水 平添加浓度梯度的不同农药标准品,以1.4步骤为依据 对样品进行前处理,平行操作每种浓度 3 次,对方法回

收率及精密度展开考察。表 2 以韭菜为基质呈现了不同 浓度梯度农药精密度及回收率数据结果。通过表中数据 得知,6种农药呈现出0.7%~9.6%范围内的精密度及 74.0% ~ 100.3% 范围内的平均加标回收率。

表 2 以韭菜为基质 6 种农药加标回收率与精密度

序号	名称	加标浓度(μg/kg)	实测	値(μg/	kg)	平均实测值(μg/kg)	精密度 RSD/%	平均回收率 /%
1		2.0	1.61	1.67	1.58	1.62	2.8	81.0
	甲胺磷	10.0	8.96	9.4	9.26	9.21	2.4	92.1
		40.0	39.6	40	40.8	40.13	1.2	100.3
		2.0	1.46	1.59	1.4	1.48	6.5	74.0
2	氯唑磷	10.0	8.19	8.85	9.14	8.73	5.6	87.3
		40.0	37.7	38.4	39.1	38.40	1.8	96.0
		2.0	1.53	1.64	1.62	1.60	3.7	80.0
3	毒死蜱	10.0	8.2	7.91	7.86	7.99	2.3	79.9
		40.0	30.6	32.3	35.4	32.77	7.4	81.9
	氧乐果	2.0	1.66	1.62	1.49	1.59	5.6	79.5
4		10.0	7.36	8.68	8.8	8.28	9.6	82.8
		40.0	35.4	34.7	34.2	34.77	1.7	86.9
	啶虫脒	2.0	1.85	1.81	1.82	1.83	1.1	91.5
5		10.0	9.47	9.45	9.58	9.50	0.7	95
		40.0	37.8	39.3	38.5	38.53	1.9	96.3
6	三唑磷	2.0	1.46	1.61	1.56	1.54	4.9	77.2
		10.0	8.05	8.5	8.86	8.47	4.8	84.7
			38.8	38.7	41.3	39.60	3.7	99.0

2.3 线性方程与相关系数

结合番茄、芹菜、韭菜及萝卜空白基质进行6种农 药混合基质系列标准工作溶液的配制,确定横、纵坐标 分别为浓度(X)与质谱峰面积(Y),完成标准工作曲

线的绘制。由表 3 得知,相应测定浓度范围内,6 种农药 呈现出良好的线性相关性,达到1.0000线性系数的有啶 虫脒与三唑磷,其余4种农药则达到0.9991及以上的线 性系数,满足相关标准要求。

表 3 6 种农药基质标准溶液线性方程与相关系数

序号	名称	线性范围	线性回归方程	相关系数 (r)
1	甲胺磷	0.10 ~ 5.00	Y=23285.6X+10977.3	0.9998
2	氯唑磷	0.10 ~ 5.00	Y=35066.7X+9808.33	0.9998
3	毒死蜱	0.10 ~ 5.00	Y=62300.4X-63397.1	0.9991
4	氧乐果	0.10 ~ 5.00	Y=73038.9X+16005.3	0.9997
5	啶虫脒	0.10 ~ 5.00	Y=146953X+18706.5	1.0000
6	三唑磷	0.10 ~ 5.00	Y=93671.4X+13344.0	1.0000

2.4 实际样品检测

以上论述的分析条件及样品处理方法为根据,以市 购番茄、芹菜、韭菜及萝卜四种蔬菜为对象,每种样品 10份,共计40份样品,检测6种农药残留。根据检测结 果得知,有多批次蔬菜样品中检出甲胺磷、氯唑磷、毒 死蜱、氧乐果、啶虫脒、三唑磷6种农药,但其含量均 小于国家标准限量。

3 讨论

3.1 QuEChERS 净化条件的优化

盐析试剂选择无水硫酸镁时, 因其具备较大的吸水 放热效应, 离心管盖处会有热气流冲出, 所以振荡时应 开启用于放气的离心管盖,操作费时费力且十分繁琐[1]。 同时, 热效应的存在, 可能会导致部分热稳定性偏差的 农药受热降解或挥发,从而降低回收率。而选择盐析试 剂为氯化钠时, 热效应不大、成本低、操作简单, 能取 得较高的回收率, 且基本上不会带给后续质谱进样基质 干扰影响,即便有也很小[2]。基于此,本试验最终确定 确盐析试剂为氯化钠。

GCB在去除样品中叶绿素及类胡萝卜素方面具备相当 显著的效果,然而却也会强力吸附多菌灵等平面结构的 农药分子,导致样品中此类农残回收率大幅下降。所以, 本试验中的吸附剂并未选择 GCB; C18 在非极性化合物 (脂肪类)中能够发挥良好的去除作用,而蔬菜样品含 极少的脂肪量, 所以本试验也未选择 C18 吸附剂; PSA 在 去除蔬菜色素、糖分及脂肪酸成分方面有着显著作用, 所以本试验确定净化剂为 PSA^[3]。试验中,围绕 PSA 不同 用量的净化效果展开对比分析, 根据结果得知, 当增加 PSA 量后, 会明显降低质谱基质干扰: 增至 100mg 的 PSA 用量时,部分农药中如果含-SH、-OH等官能团,其回收 率会下降。因此,本试验最终确定 PSA 用量为 75mg。

3.2 提取溶剂的选择

甲醇、乙腈、酸化乙腈及丙酮等属于常见的农药残 留超声提取溶剂。选择甲醇与丙酮时,会有大量水分带 入其中,加大盐析除水操作难度,影响后续质谱进样。 选择乙腈和酸化乙腈时,两者能取得较好的回收率,但 酸化乙腈的保护作用仅在部分农药中发挥[4]。本试验中, 对比分析了纯乙腈与1%乙酸乙腈的效果,根据试验结果 得知在不同极性农药中乙腈所发挥的提取效果较为良好, 且能互溶于水,在盐作用下与水能够顺利分离。同时, 选择乙腈提取时带入的杂质远少于酸化乙腈。基于此,

本试验最终确定提取溶剂为 10mL 乙腈。

3.3 基质效应的优化

蔬菜样品中色素、纤维素等植物性基质成分量较大, 会抑制或增强部分农药,导致最终检测结果准确性下降, 即便引入一系列净化措施处理萃取液通常也无法彻底消 除[5]。而通过农残基质匹配标准曲线的运用,在蔬菜样 品中基质效应的消除方面发挥着重要作用 [6]。为取得最 佳的基质匹配效果, 本试验以不含目标物的各类蔬菜样 品为对象,经1.4章节处理获取基质空白液后,分别进 行基质匹配混合系列标准曲线溶液的制备, 以降低基质 在质谱分析中的干扰。

综上所述, 本试验中选择乙腈超声提取, 样品基质 经 QuEChERS 法净化后,采用 LC-MS/MS 测定蔬菜中 6 种 农药残留。试验结果表明,该方法具备较高的准确度、 回收率和灵敏度,操作简便,分离效能高,重现性良好, 检出下限未超出国家食品安全限量标准, 可用于蔬菜样 品多种农药残留检测。

参考文献:

[1] 冯涛, 阮世勇, 罗苑铭, 等.LC-MS/MS测定蔬菜中苯 醚甲环唑残留的研究 []]. 食品工程,2021(2):55-58.

[2] 高娜, 孙程鹏, 许炳雯, 等. 液相色谱串联质谱法 测定不同蔬菜中农药多残留的基质效应[[].食品科 技,2021,46(4):310-317.

[3] 司文帅,张颖,张耀丹,等.绿叶蔬菜中烯啶虫胺、氟 啶虫胺腈残留的 LC-MS / MS 检测方法研究 []. 上海农 业学报,2021,37(6):132-135.

[4] 黄科,张建莹,邓慧芬,等.超高效液相色谱串联质 谱仪法测定蔬菜中20种酸性除草剂残留 Ⅲ. 分析科学学 报,2019,35(6):824-830.

[5] 黄兰淇,张正炜,陈秀,等.超高效液相色谱串联质 谱仪同时检测蔬菜和水果中30种农药残留Ⅲ.世界农 药,2021,43(7):46-53.

[6] 陈俊秀, 马晓年, 李文廷, 等. 超高效液相色谱串联质 谱仪法测定蔬菜中4种氨基甲酸酯类农药残留量 [[]. 食品 安全质量检测学报,2021,12(5):1789-1797.