牛猪健康养殖及常见病的防治

王 伟

定州市农业农村局动物防疫监督总站,河北保定 073000

【摘要】本文就生猪健康养殖技术进行了具体介绍,分析了几种常见疾病的特点及治疗措施,希望能够为我国养猪产业 提供参考及借鉴,保障猪群健康成长,提高养殖户经济效益。

【关键词】生猪;健康养殖;疾病;治疗

【中图分类号】S828.4;S858.28 【文献标识码】A [DOI] 10.12325/j.issn.1672-5336.2022.14.027

猪肉是我国必不可少的一种肉类食品,不仅味道鲜 美,同时富含油脂,深受消费者喜爱,其发展潜力巨大, 发展空间极为广阔。要想保证生猪养殖业良好的经济效 益及社会效益, 就必须采取科学的养殖技术, 做好常见 病的防治工作,以保障猪群健康生长。

1 健康养殖技术

1.1 饲养管理技术

1.1.1 坚持全进全出

在生猪养殖中, 多点生产技术就是将一条龙式生产 工艺划分为三点饲养或者四点饲养方式, 需保证各个区 域相互独立并具备足够的距离, 防止其相互交叉, 各个 阶段的猪群需严格落实全进全出的饲养管理制度,同时 做好相关清洗消毒工作,将可能存在的传染链条彻底切 断。这种方式对当前较为严重的疫病控制效果极为明显。

产房母猪及断奶仔猪必须严格坚持全进全出、严格 计划配种并采取小单元栏舍产仔方式,将各个单元产仔 数量控制在11~15头,注意将前后间隔时间控制在5~7 日,接着统一转入至保育舍内饲养,将空栏退出后需注 意彻底清洗并消毒,栏舍空置5~6日后方可转入下批 待产母猪。

对于保育仔猪, 需对保育舍做好小单元设计工作, 确保保育舍内饲养条件与产房相一致并对其逐步过渡。 在过渡期内, 需对转入的仔猪强化保温, 尽可能采取与 产房相一致的饲料以及饲喂频率,坚持少量多次。在过 渡期结束后,采取自由采食方式,待保育35~40日保 育猪体重超过 30kg 后,即可将其转出至育肥舍内饲养。

1.1.2 分阶段饲养

为确保猪只健康生长,在猪群各个生长阶段必须为 其提供所必需的营养,要想提升猪只机体对环境应激及 疾病的抵抗力,获取品质优良的产品,提升养猪综合效 益,就必须为其提供高品质的全价饲料。在日常养殖中, 可将育肥猪养殖划分为育肥前期及育肥后期2个阶段, 母猪养殖划分为空怀妊娠前期、妊娠后期、哺乳期3个 阶段,将哺乳仔猪养殖划分为引料期及补料期2个阶段, 将断奶仔猪养殖划分为断奶过渡期及保育期2个阶段, 在生猪各个生长阶段需为其提供不同的日粮。

1.1.3 早期断奶技术

在仔猪38日龄时, 需为其断奶。早期断奶关键技术 为: 在确定断奶日龄后,在生产中需避免出现已超过断 奶天数的仔猪进入培育区的现象。需结合养殖场实际情 况确定科学的断奶日龄, 断奶日龄每提前一日, 对营养 及管理要求就越高。

需采取严格的生物安全措施,以减少致病性病原的 引入。还需严格控制培养舍内温度、通风以及卫生等小 环境。需为断奶仔猪提供适口性良好、易消化吸收的优 质饲料。

1.1.4 控制猪舍小环境条件

针对不同生长发育阶段的猪群, 需为其提供针对性 的猪舍环境条件。需结合季节的不同,针对性地做好猪 舍通风、降温、保暖等各项工作,为猪群提供最适宜生 长发育的湿度、温度以及气流环境。需注意, 母猪及大 猪对高温较为敏感,而小猪对低温较为敏感。另外,若 通风不佳极容易诱发多种呼吸道疾病, 需对其加强重视。

1.2 构建养殖卫生体系

在生猪养殖中,需坚持"养防结合、防重于治"这 一基本原则,结合实际情况制定科学合理的防疫程序, 严格落实消毒及防疫工作。需定期为猪群检测抗体水平。 另外,还需减少抗生素药物的用量,对疾病早期预防工 作加强重视。为避免细菌感染,除为仔猪提供满足卫生 标准的饲料为,禁止对其采取断齿或者断尾等,通过避 免创伤性措施以降低疾病感染概率。

1.2.1 早期预防及保健用药

在猪病控制中, 免疫注射、预防保健以及生物安全 时三大要素,其中预防保健是最为重要的一个环节。

(1) 后备母猪保健: 后备母猪保健的主要目的即预防 细菌性疾病或病毒性疾病,控制呼吸道疾病。将后备母 猪体内的病原菌清除,从而对其体内病毒数量及活性有 效抑制, 采取药物净化猪场内的常见病。提升后备母猪 机体免疫力,促进其发情,以提升配种率:(2)母猪保健: 母猪保健即需要清除母猪体内毒素,提升其机体免疫力, 对各种疫病有效预防, 以防止疫病通过胎盘垂直传播给 胎儿; (3) 空怀母猪及断奶母猪: 可将适量土霉素等抗生 素药物添加至母猪饲料内; (4) 妊娠母猪: 需预防附红细 胞感染及衣原体感染, 防止因圆环病毒病或者蓝耳病等 引发的母猪繁殖障碍[1]。在母猪妊娠前期及后期,可将 适量抗生素药物、维生素 E、亚硒酸钠等添加至饲料内; (5) 种公猪保健:结合猪场以及季节特点,每月或者每间 隔一段时间投药1次,可采取呼诺芬或者土霉素预混剂 等抗生素: (6) 哺乳仔猪: 哺乳仔猪保健的主要目的即预 防腹泻性疾病,提升仔猪体质,保证仔猪成活率。另外, 还需预防病毒性疾病; (7) 驱虫: 需定期驱除猪只体内外 寄生虫,同时对环境清洁卫生加强重视,强化粪便管理 以防再次感染。

1.2.2 免疫程序的制定及实施

为切实提升养殖经济效益,针对某些传染病,必须树立"防重于治"的观念。计划性地为猪群免疫接种可防患于未然。在接种前,必须对猪只健康状况全面了解并仔细检查,逐瓶检查疫苗,在免疫接种结束后,需对猪群可能发生的应激反应加强重视。若同时为猪只接种2种以上的疫苗,必须对疫苗间的相互影响重点考虑。

(1)免疫程序:后备公母猪:对后备公母猪引进式选留,首先对其隔离观察,同时注射 4 头份的猪瘟疫苗,连续投喂 1 周 200g/t 的复方敌菌净,待猪只体重超过60kg 时为其免疫,免疫注射间隔需达到7日及以上。一般需注射伪狂犬病灭活苗、细小病毒灭活苗、猪三联苗、五号病高效浓缩苗。在母猪妊娠90日,需接种红黄痢二联苗,并于104日二免;(2)仔猪:如猪场一年内曾出现过猪瘟或者正在发生猪瘟,需为猪群进行猪瘟超免,一般为初生仔猪在吃初乳1~2h后接种1~2头份猪瘟疫苗;在仔猪2日龄时滴鼻接种伪狂犬病苗;在仔猪13日龄时接种链球菌苗;在仔猪21日龄时接种二头份猪瘟疫苗;在仔猪50~60日龄时接种2头份猪瘟疫苗及1头份十三联苗;在仔猪70日龄时进行五号病初免,于100日龄时进行五号病二免。

1.2.3 早期检测及诊断

需对疾病早期预防工作加强重视,在临床诊断基础之上采取实验室诊断措施,以强化疾病监测,结合监测结果采取及时准确的反应。按照胎次抽查成年母猪,对公猪进行全检,每4周为一个年龄段为生长育肥猪进行全段抽查同时做好记录工作。做好猪场部分清群工作,将传染病的传播链条彻底阻断,每年可部分清群1~2次。在每次清群结束后,每天于清群后1日、清群后13日、

清群后 14 日采用 3 种不同的消毒药消毒,以清除病菌。 1.2.4 猪群淘汰

针对已丧失种用价值的猪及失去饲养价值的残次猪, 需及时对其淘汰,以减少饲料、药物及人工开支,减少 疫病传播。

1.3 构建养殖饲料生产体系

1.3.1 养殖营养配制技术

营养状况会对猪只免疫能力造成直接影响,养殖户可采取营养途径对猪群各种疾病的暴发有效预防。若日粮内营养能够满足猪只需求,其机体处于生理稳态,此时猪只处于最佳的免疫状态,这样可有效提升其对疾病的抵抗力。在使用全价日粮时,需结合猪只生理阶段的不同、营养需求的不同针对性地制定饲料配方,对日粮内能量合理配制,提升蛋白质水平,强化氨基酸利用效率,以减少粪尿内氮元素的排泄^[2]。

1.3.2 使用无公害饲料添加剂

饲料添加剂严禁使用抗生素或者激素,不得为猪群喂食"瘦肉精",需对高锌、高铜等生长促进剂的添加量严格控制。需注意,30kg以下的猪只,饲料内铜元素的含量需低于250mg/kg,30~60kg的猪只饲料内铜元素含量需低于150mg/kg。另外,严禁饲用抗生素,并不代表绝对不得使用抗生素,而是在疾病治疗时,可在兽医处方内使用抗生素。

1.4 构建生物安全体系

1.4.1 养殖场科学选址及规划

需结合当地资源条件、经济社会发展情况、市场需求量、周边环境以及管理水平等综合确定养殖场地址及规模。在新建猪场时必须对其开展环境评估,避免猪场及周边环境相互污染。在猪场选址时,必须结合当地土地利用发展需求,选择地势高燥、交通便利、背风向阳、水源充足、防疫条件良好的区域。在建设养殖场时,需严格划分生产区、管理区以及隔离区3个不同的功能区并对其科学分布,确保各个功能区之间界限分明,保证其间距超过50m,在各功能区周边设置围墙或者防疫隔离带。

结合养殖情况确定猪舍建筑面积,一般商品育肥猪需 1.0m²/头的面积,按照每头猪 0.1m² 计算其他辅助建设面积。采取砖混结构或者轻钢结构建设猪舍,猪舍需配备窗户或采取半开敞式,猪舍净高需超过 2.5m,长度一般为 60~85m,跨度通常为 9~15m。需对猪舍地面硬化,确保地面硬实便于冲刷。在猪场设置绿化隔离带,在大门入口处设置消毒池,生产区入口除设置人员更衣及沐浴池,猪舍入口位置还需设立消毒池。隔离区内还需配备隔离猪舍以及兽医室,设置无害化处理设施以及粪尿污水处理设施,确保场区内绿化覆盖面积超过 30%。

1.4.2 猪场防疫及消毒

在各种工具使用后需注意及时将附着物清除, 待冲

洗干净后结合器具性质及用途采取适宜的方式消毒[3]。

在仔猪断脐、断尾或者阉割后,需采用2%~5%碘 酊对手术部位消毒。对于仔猪,每周需进行一次带猪消毒。

每周需对走道、过道、售猪台等进行一次消毒。场 内员工在进出生产区域时, 必须提前更换工作服同时做 好洗手消毒工作。需采取紫外线对工作服消毒, 对外来 人员严格控制。

1.4.3 环境控制

猪为恒温动物,其体温一般为39℃。应将产仔舍温 度控制在20℃~29℃,为仔猪活动区域局部供热。新生 仔猪适宜的环境温度为30℃~34℃,之后每日将温度降 低 0.5℃;保育舍主要饲养 7~11周龄后的仔猪,舍内 温度以21℃~27℃较适宜; 育肥猪舍以及妊娠猪舍温度 以 10° $\sim 29^{\circ}$ 较为适宜:配种舍温度以 13° $\sim 29^{\circ}$ 较 为适宜。在秋冬季节, 需对温度控制加强重视, 为猪群 提供适宜的温度。另外,猪群适宜在50%~85%的相对 湿度内生存,养殖户需严格把控。

2 常见病治疗

2.1 仔猪黄痢

仔猪黄痢又被称为早发性大肠杆菌病, 其病原为特 定血清型大肠杆菌,是仔猪常见的一种急性肠道疾病。 其主要症状为: 1~7日仔猪粪便为黄灰色稀水样,40 日龄后无明显拉黄痢现象。对病死猪剖检, 可见其存在 败血症以及胃肠炎病变, 部分病猪无明显病变。成年猪 及育肥猪发病率极低,在产仔期,常见多窝仔猪发病, 单窝发病率甚至可以达到100%, 仔猪黄痢的致死率一般 为30%。猪舍卫生不佳、饲料成分过于单一、母猪感染、 乳汁浓度过高等是仔猪黄痢的诱因, 患病仔猪常不停饮 水,但是仍然存在脱水症状。

在仔猪发病时,需立即为整窝猪崽给药,较为常见 的治疗药物为痢特灵、氯霉素、磺胺甲基嘧啶等,同时 为仔猪补充维生素 C、维生素 B 及维生素 B12。

2.2 猪水肿病

猪水肿病又被称为猪大肠杆菌毒血症,其病原为病 原性大肠杆菌, 是一种急性、致死性疾病, 主要高发于 断奶仔猪,体格健壮、生长发育快的仔猪发病率更高, 瘦小仔猪发病率较低。饲料成分过于单一、突然转变饲 养方式、饮水污染等是猪水肿病发生的主要诱因,患病 猪只主要变现为精神萎靡、食欲不佳、呻吟抽搐、行走 不稳、眼睑水肿等。

针对患病猪只,常见治疗方式即采取人工盐缓泻, 以促进猪只肠胃运动,帮助其排尿、消除水肿病缓解症状。

2.3 仔猪副伤寒

仔猪副伤寒是一种死亡率极高的仔猪疫病, 其病理 典型,急性型特征为败血症变化,而慢性型特征为弥漫 性纤维素性坏死性肠炎。此病无明显季节性特点,多发 生于雨季,30~120日龄仔猪发病率较高。仔猪发病后, 其体温迅速升高,精神萎靡,同时伴随有呼吸障碍的症状; 靠近心脏部位皮肤颜色为红紫色。病猪腹泻不断,粪便 呈黄绿色或者灰白色,存在恶臭气味:病猪被毛杂乱, 不断尖叫,持续弯腰。对病死猪剖检,可见其浆膜及黏 膜淤血现象突出,内脏器官存在实质性损伤,特别是淋 巴结存在明显的出血现象, 肾脏、脾脏、肝脏增生变大, 肝脏甚至发生坏死,肠壁厚度增加,表现为麦麸样伪膜[4]。

针对仔猪副伤寒病,一般采取防疫加抗菌消炎治疗, 可利用庆大霉素、卡那霉素、痢菌净治疗。

2.4 仔猪白痢

仔猪白痢多发生于哺乳期仔猪, 母猪繁育期较为常 见,该病病死率不高,一旦发生会对仔猪的生长发育造 成严重影响。仔猪白痢病因较为复杂,一般是由迟发性 大肠杆菌导致仔猪肠道菌群失调而引起,常造成胃肠道 内大肠杆菌的滋生, 仔猪白痢高发于 10~30 日龄仔猪, 7日龄内及超过30日龄的仔猪发病率极低。仔猪白痢的 发生无明显季节特点,但是在冬春交替季节发病率较高, 特别容易发生于阴暗寒冷的猪舍。猪只发病后,主要表 现为迅速腹泻,粪便呈浆状或者糊状,颜色为白色或者 灰白色, 存在恶臭气味。病猪精神萎靡、畏寒怕冷、食 欲不佳,有时存在吐奶症状。若持续发作,仔猪身体僵硬、 排便失禁。对病死猪尸体剖检,可见其胃黏膜水肿,存 在充血症状。肠内容物颜色为灰白色,同时散发出恶臭 气味。肠壁出现退行性病变,同时伴随有出血脱落症状, 肠系膜淋巴结明显肿大。

仔猪白痢可采取以下方式治疗: (1) 采用链霉素、 安普霉素等抗菌药物治疗; (2) 采用小苏打及食母生促 进消化: (3) 及时为病猪补充葡萄糖生理盐水。

3 结束语

在生猪养殖过程中,养殖户必须掌握科学的饲养管 理技术, 只有这样才能确保猪只满足市场需求, 提升养 殖经济效益。同时针对生猪各种疫病,要想对其有效预防, 就必须对各项防疫措施加强重视, 严格落实养殖场内卫 生防控工作,以推进生猪养殖业实现健康发展。

参考文献:

[1] 王志新. 猪的健康养殖技术研究[J]. 农民致富之 友,2018(13):23.

[2]潘培连. 生态猪养殖新技术及其发展趋势探讨 [[]. 今日 畜牧兽医,2018,34(4):57.

[3] 宋荣凤, 包小芝. 猪病的流行特点与防治对策 []]. 中国 动物保健,2020,22(6):10.

[4] 伍锡燕, 李高飞. 切断传染源与传染途径对防治猪病 的重要性 []]. 兽医导刊,2020(15):14.